
Top 10 User Mistakes
with Static Analysis

Sate IV

March 2012

About Parasoft

 Founded in 1987

 27+ Patents for automated quality processes

 Build quality into the process

 Static Analysis tools since 1994

What IS Static Analysis?

 Variety of methods

 Peer Review / Manual Code Review / Code Inspection

 Pattern-based code scanners

 Flow-based code scanners

 Metrics-based code scanners

 Compiler / build output

Number 10: Developers

10) Developers not included in process evolution

 Developer Insights

 Rules / Issues drive need

 Workflow

 Usability

 Correctness / Noise

 Will our engineers really adopt it and use it?

 Is this a long-term solution?

Code Analysis Perceptions

 “Static analysis is a pain”

 False positives has varying definitions
 I don’t like it

 It was wrong

Pattern based false positives

 True false positives generally rule deficiency

 Context

 Does this apply here and now?

 In-code suppressions to document decision

Flow Analysis False Positives

 False positives are inevitable

 Finds real bugs

 Flow analysis is not comprehensive

Number 9: Expectations

9) Wrong expectations

 Why do static analysis?

 Because it’s the right thing?

 Increase quality?

 Decrease costs?

 Reduce development time?

 Flow analysis is enough

 When will it pay-off?

 How can I tell it’s paying off?

Number 8: Approach

8) Taking an audit approach

 Running SA on all your code (Don’t)

 It’s all about the reports (Or is it?)

Number 7: Too Much

7) Starting with too many rules

 Static Analysis is about process

 It’s incremental

 Avoid biting off more than you can chew

 Avoid any rule you won’t stop the build for

Don’t Get Run Over

 Same set of rules for everyone

 Small set of rules

 Less rules that are followed is better than more
that are not

 If you wouldn’t fix it, don’t check for it

Number 6: Workflow

6) Workflow integration

 Has to work with your development UI

 Same configuration for desktop and server

 Minimize negative impact

 Minimize time to find / fix violations

Results within IDE

1 Results delivered as uniform view within IDE

2 Directly access line of code to fix

3 Check-in

Number 5: Training

5) Lack of sufficient training

 How to install the tool

 How to configure the tool

 How to setup the build

 How to run the tool

 How to mitigate violations

 How/when to suppress

Number 4: Process

4) No defined process

 Developers are not necessarily process experts

 Process should minimize impact of SA

 Consistent for teams and projects

 Vetted in a pilot project

Number 3: Automation

3) No automated process enforcement

 Reduce effort

 Consistency

 Compliance

Number 2: Policy

2) Lack of a clear policy

 What teams need to do SA?

 What projects require SA?

 What rules are required?

 What amount of compliance?

 When can you suppress?

 How to handle legacy code?

 Do you ship with SA violations?

Number 1: Management

1) Lack of management buy-in

 Requirements

 Allowed time

 Understanding of the ROI

 Enforcement

The Whole Top 10

 10) Developers not included in process evolution

 9) Wrong expectations

 8) Taking an audit approach

 7) Starting with too many rules

 6) Workflow integration

 5) Lack of sufficient training

 4) No defined process

 3) No automated process enforcement

 2) Lack of a clear policy

 1) Lack of management buy-in

Honorable Mention: The Wrong Stuff

 Wrong Tool

 Wrong Process

 Email reports

 Blocking

 Painful CI workflow

 Wrong Rules

 Unimportant rules

 Too many rules

 Wrong Code

 Legacy strategy

 Don’t test what you won’t / can’t change

Honorable Mention: What’s Lacking

 Lack of management buy-in

 The edict

 Allowed time & budget

 Lack of development buy-in

 Willful non-compliance

 Lack of training

Q&A / Further Reading

 Automated Defect Prevention
 (Huizinga & Kolawa)

…Principles and processes to improve the
software development process.

 Effective C++ / More Effective C++
(Meyers)

…Definitive work on proper C++ design
and programming.

 Effective Java
 (Bloch)

…Best-practice solutions for programming
challenges.

 Design Patterns
 (Gamma, Helm, Johnson, Vlissides)

…Timeless and elegant solutions to
common problems.

